
Top 10 User Mistakes
with Static Analysis

Sate IV

March 2012

About Parasoft

 Founded in 1987

 27+ Patents for automated quality processes

 Build quality into the process

 Static Analysis tools since 1994

What IS Static Analysis?

 Variety of methods

 Peer Review / Manual Code Review / Code Inspection

 Pattern-based code scanners

 Flow-based code scanners

 Metrics-based code scanners

 Compiler / build output

Number 10: Developers

10) Developers not included in process evolution

 Developer Insights

 Rules / Issues drive need

 Workflow

 Usability

 Correctness / Noise

 Will our engineers really adopt it and use it?

 Is this a long-term solution?

Code Analysis Perceptions

 “Static analysis is a pain”

 False positives has varying definitions
 I don’t like it

 It was wrong

Pattern based false positives

 True false positives generally rule deficiency

 Context

 Does this apply here and now?

 In-code suppressions to document decision

Flow Analysis False Positives

 False positives are inevitable

 Finds real bugs

 Flow analysis is not comprehensive

Number 9: Expectations

9) Wrong expectations

 Why do static analysis?

 Because it’s the right thing?

 Increase quality?

 Decrease costs?

 Reduce development time?

 Flow analysis is enough

 When will it pay-off?

 How can I tell it’s paying off?

Number 8: Approach

8) Taking an audit approach

 Running SA on all your code (Don’t)

 It’s all about the reports (Or is it?)

Number 7: Too Much

7) Starting with too many rules

 Static Analysis is about process

 It’s incremental

 Avoid biting off more than you can chew

 Avoid any rule you won’t stop the build for

Don’t Get Run Over

 Same set of rules for everyone

 Small set of rules

 Less rules that are followed is better than more
that are not

 If you wouldn’t fix it, don’t check for it

Number 6: Workflow

6) Workflow integration

 Has to work with your development UI

 Same configuration for desktop and server

 Minimize negative impact

 Minimize time to find / fix violations

Results within IDE

1 Results delivered as uniform view within IDE

2 Directly access line of code to fix

3 Check-in

Number 5: Training

5) Lack of sufficient training

 How to install the tool

 How to configure the tool

 How to setup the build

 How to run the tool

 How to mitigate violations

 How/when to suppress

Number 4: Process

4) No defined process

 Developers are not necessarily process experts

 Process should minimize impact of SA

 Consistent for teams and projects

 Vetted in a pilot project

Number 3: Automation

3) No automated process enforcement

 Reduce effort

 Consistency

 Compliance

Number 2: Policy

2) Lack of a clear policy

 What teams need to do SA?

 What projects require SA?

 What rules are required?

 What amount of compliance?

 When can you suppress?

 How to handle legacy code?

 Do you ship with SA violations?

Number 1: Management

1) Lack of management buy-in

 Requirements

 Allowed time

 Understanding of the ROI

 Enforcement

The Whole Top 10

 10) Developers not included in process evolution

 9) Wrong expectations

 8) Taking an audit approach

 7) Starting with too many rules

 6) Workflow integration

 5) Lack of sufficient training

 4) No defined process

 3) No automated process enforcement

 2) Lack of a clear policy

 1) Lack of management buy-in

Honorable Mention: The Wrong Stuff

 Wrong Tool

 Wrong Process

 Email reports

 Blocking

 Painful CI workflow

 Wrong Rules

 Unimportant rules

 Too many rules

 Wrong Code

 Legacy strategy

 Don’t test what you won’t / can’t change

Honorable Mention: What’s Lacking

 Lack of management buy-in

 The edict

 Allowed time & budget

 Lack of development buy-in

 Willful non-compliance

 Lack of training

Q&A / Further Reading

 Automated Defect Prevention
 (Huizinga & Kolawa)

…Principles and processes to improve the
software development process.

 Effective C++ / More Effective C++
(Meyers)

…Definitive work on proper C++ design
and programming.

 Effective Java
 (Bloch)

…Best-practice solutions for programming
challenges.

 Design Patterns
 (Gamma, Helm, Johnson, Vlissides)

…Timeless and elegant solutions to
common problems.

